Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae.
نویسندگان
چکیده
The Saccharomyces cerevisiae Yap1p transcription factor is required for the H2O2-dependent activation of many antioxidant genes including the TRX2 gene encoding thioredoxin 2. To identify factors that regulate Yap1p activity, we carried out a genetic screen for mutants that show elevated expression of a TRX2-HIS3 fusion in the absence of H2O2. Two independent mutants isolated in this screen carried mutations in the TRR1 gene encoding thioredoxin reductase. Northern blot and whole-genome expression analysis revealed that the basal expression of most Yap1p targets and many other H2O2-inducible genes is elevated in Deltatrr1 mutants in the absence of external stress. In Deltatrr1 mutants treated with H2O2, the Yap1p targets, as well as genes comprising a general environmental stress response and genes encoding protein-folding chaperones, are hyperinduced. However, despite the elevated expression of genes encoding antioxidant enzymes, Deltatrr1 mutants are extremely sensitive to H2O2. The results suggest that cells lacking thioredoxin reductase have diminished capacity to detoxify oxidants and/or to repair oxidative stress-induced damage and that the thioredoxin system is involved in the redox regulation of Yap1p transcriptional activity.
منابع مشابه
The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae.
Deletion of the bacterial two-component response regulator homologue Skn7 results in sensitivity of yeast to oxidizing agents indicating that Skn7 is involved in the response to this type of stress. Here we demonstrate that following oxidative stress, Skn7 regulates the induction of two genes: TRX2, encoding thioredoxin, and a gene encoding thioredoxin reductase. TRX2 is already known to be ind...
متن کاملTrx2p-dependent Regulation of Saccharomyces cerevisiae Oxidative Stress Response by the Skn7p Transcription Factor under Respiring Conditions
The whole genome analysis has demonstrated that wine yeasts undergo changes in promoter regions and variations in gene copy number, which make them different to lab strains and help them better adapt to stressful conditions during winemaking, where oxidative stress plays a critical role. Since cytoplasmic thioredoxin II, a small protein with thiol-disulphide oxidoreductase activity, has been se...
متن کاملThe Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae.
Glutathione is synthesized in two sequential reactions catalyzed by gamma-glutamylcysteine synthetase (GSH1 gene product) and glutathione synthetase (GSH2 gene product). The expression of GSH1 in Saccharomyces cerevisiae has been known to be up-regulated by Yap1p, a critical transcription factor for the oxidative stress response in yeast. The present study demonstrates that GSH2 expression is a...
متن کاملIdentification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae.
The so-called thioredoxin system, thioredoxin (Trx), thioredoxin reductase (Trr), and NADPH, acts as a disulfide reductase system and can protect cells against oxidative stress. In Saccharomyces cerevisiae, two thioredoxins (Trx1 and Trx2) and one thioredoxin reductase (Trr1) have been characterized, all of them located in the cytoplasm. We have identified and characterized a novel thioredoxin ...
متن کاملAssociation of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response.
Saccharomyces cerevisiae Skn7p is a stress response transcription factor that undergoes aspartyl phosphorylation by the Sln1p histidine kinase. Aspartyl phosphorylation of Skn7p is required for activation of genes required in response to wall stress, but Skn7p also activates oxidative stress response genes in an aspartyl phosphorylation-independent manner. The presence of binding sites for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 39 3 شماره
صفحات -
تاریخ انتشار 2001